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Abstract A quantitative measure of intraepithelial neoplasia which can be made in vzvo without tissue 
removal would be clinically significant in chemoprevention studies. Our group is working to develop 
such a technique based on fluorescence spectroscopy. Using empirically based algorithms, we have 
demonstrated that fluorescence is discriminating normal cervix from low- and high-grade cervical 
dysplasias with similar performance to colposcopy in expert hands. These measurements can be made 
in viva, in near real time, and results can be obtained without biopsy This paper describes a new 
method using automated analysis of fluorescence emission spectra to classify cervical tissue into multi- 
ple diagnostic categories. First, data is reduced using the singular value decomposition (SVD), yielding 
a set of orthogonal basis vectors. Each patient's emission spectrum is then fit by linear least squares 
regression to the basis vectors, producing a set of coefficients for each patient. Based on these coefficient 
values, the classification and regression tree (CART) method predicts the patient's classification. These 
results suggest that laser-induced fluorescence can be used to automatically recognize and differentially 
diagnose cervical intraepithelial neoplasia (CIN) at colposcopy. This method of analysis is general in 
nature, and can analyze fluorescence spectra of suspected intraepithelial neoplasms from other organ 
sites. As a more complete understanding of the biochemical and morphologic basis of tissue spectros- 
copy is developed, it may also be possible to use fluorescence spectroscopy of the cervix as a surrogate 
endpoint biomarker in Phase I and I1 chemoprevention trials. 
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The development of invasive cervical neopla- 
sia is believed to be preceded by a preinvasive 
stage, cervical intraepithelial neoplasia (CIN) [I]. 
Tertiary cancer prevention has focused on identi- 
fying and treating intraepithelial neoplasia in 
either the general population or in groups at 
high risk for developing carcinoma. Although 
screening, detection, and treatment programs 
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have markedly reduced cervical carcinoma mor- 
tality, significant problems remain. Cervical car- 
cinoma mortality rates are estimated to rise by 
20% in the years 2000-2004 unless further im- 
provements are made in current screening and 
diagnostic techniques [21. Cytologic techniques 
used for initial CIN screening have a false-nega- 
tive error rate of 20-30%. An abnormal Pap 
smear is followed by colposcopy, which has a 
limited predictive value even in experienced 
hands. Therefore, accurate diagnosis of CIN re- 
quires biopsy and histologic analysis. Improving 
the predictive value of CIN, particularly for less 
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experienced practitioners, could save patients 
from multiple biopsies and allow faster, more 
effective patient diagnosis and treatment, per- 
haps permitting diagnosis and treatment in a 
single visit. Optical diagnosis could be used to 
follow patients in chemoprevention trials without 
biopsy until the termination of the trial. 

Toward this end, we are working to develop 
a quantitative measure of intraepithelial neopla- 
sia which can be made in vivo without tissue 
removal. Our system is based on a technique 
known as fluorescence spectroscopy, in which 
tissue is illuminated with monochromatic light 
and the resulting fluorescence spectrum (the 
fluorescence intensity as a function of wave- 
length) is measured quantitatively. Because the 
cervix can be readily visualized, we have se- 
lected CIN as a model system to demonstrate the 
utility of diagnostic fluorescence spectroscopy. 

A recent paper [31 reviewed our work in de- 
veloping fluorescence spectroscopy for CIN diag- 
nosis at colposcopy and discussed possibly using 
fluorescence spectroscopy as an SEB. In this pa- 
per, we present a method of developing classifi- 
cation algorithms which, based on its fluores- 
cence spectrum, automatically identifies whether 
a cervical site is normal or contains a low- or 
high-grade dysplasia. Such algorithms are central 
to developing an optical system for real time 
automated diagnosis of cervical dysplasia at col- 
poscopy. 

DATA 

Our spectroscopic system incorporates a 
pulsed nitrogen dye laser, an optical fiber probe 
and an optical multi-channel analyzer to record 
fluorescence spectra of the cervix in vfvo [31. Us- 
ing this system, we collected fluorescence emis- 
sion spectra from 276 tissue sites (each 2 mm in 
diameter) in a total of 93 patients. Emission spec- 
tra for excitation wavelengths of 337 nm, 380 nm, 
and 460 nm were measured for each sample. 
Emission intensities were measured from 360 nm 
to 650 nm in increments of 5 nm for the 337 nm 
excitation, from 400 nm to 680 nm for the 380 
nm excitation, and from 480 nm to 680 nm for 
the 460 nm excitation. Each sample was graded 
as belonging to exactly one of the following cate- 
gories: squamous normal, columnar normal, met- 
aplasia, inflammation, low-grade squamous in- 
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Fig. 1. Representative emission spectra from 337 nrn exci- 
tation for two patients. In the top figure, the spectra are 
obtained from, in order of decreasing magnitude, LGSIL, 
squamous normal, squamous normal, HGSIL, and LGSIL 
samples. In the bottom figure, the four spectra represented 
by solid lines are from squamous normal samples, while 
the spectrum shown by the dotted line is from a columnar 
normal sample. These figures illustrate within-patient and 
between-patient variability of the data. 

traepithelial lesion (LGSIL), or high-grade SIL 
(HGSIL). Materials and methods used to obtain 
the spectra are described in detail elsewhere [31. 

Figure 1 shows representative curves for two 
patients at the 337 nm excitation. In the top 
panel, the curves are, in descending order of 
magnitude, from LGSIL, squamous normal, squa- 
mous normal, HGSIL, and LGSIL samples. This 
decrease in emission magnitude with increasing 
pathologic severity is consistent throughout the 
data. It is clear from this figure that we cannot 
hope to distinguish squamous normal tissue 
from LGSIL, or to distinguish LGSIL from 
HGSIL at 337 nm; thus, it is necessary to exam- 
ine the emission spectra at several excitation 
wavelengths. The lower panel shows curves from 
four squamous normal samples and one colum- 
nar normal sample; the columnar normal sample 
is indicated by the dotted line. This figure illus- 
trates the level of variability which may be found 
even within a given patient. 

A comparison of the y axis scales of the plots 
shows considerable patient-to-pa tient variation in 
the intensity of the curves. This interpatient vari- 
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ability is important for algorithm development; 
although magnitude decreases with increasing 
severity within each patient, different patients 
may well show overlap between magnitudes 
representing normal tissue in one patient and 
pathology in another. Thus, either each sample 
must be calibrated to the magnitude which rep- 
resents normal for that patient, or characteristics 
other than overall magnitude of the emission 
spectra must be used in the analysis. 

Previous studies have shown good success in 
classifying samples based on their emission sgec- 
tra [3-61; however, the techniques used in those 
studies assumed that approximately one-half of 
the samples obtained from any given patient will 
be squamous normal. This article describes two 
approaches which do not depend on such distri- 
bution. The first considers each sample individu- 
ally, without reference to other samples obtained 
from the same patient. The second assumes that 
the technician performing the examination will 
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Fig. 2. Average emission spectra from excitation at 337 
nm for the six tissue types. The upper panel is taken from 
the unpreprocessed data. The squamous normal curve is 
topmost and is well separated from the remaining types. 
The next highest curve represents LGSIL, while the bottom- 
most curve represents metaplastic tissue. The remaining 
tissue types are not well separated at this excitation wave- 
length. In the bottom panel, each spectrum was normalized 
by the area of that spectrum before the averages were 
taken. The squamous normal curve remains well separated 
because peak emission occurs at a lower wavelength for 
squamous normal samples than for others. 

obtain spectra from tissue which is clearly squa- 
mous normal; these spectra are then used to caii- 
brate all other spectra from the same patient. 

Figure 2 illustrates the data used for the first 
approach. The top panel shows the average spec- 
trum (from the 337 nm excitation) for each tissue 
type. The topmost curve in the figure is the aver- 
age for squamous normal and is well separated 
from curves for other tissue types. The next 
highest curve represents the LGSIL. The average 
curve for metaplastic samples is the bottommost 
curve. The average curves for columnar normal, 
inflammation, and HGSIL are not well separated 
at the excitation wavelength; indeed, the curves 
for columnar normal and HGSIL are virtually 
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Fig. 3. Average emission spectra from excitation at 
337 nm for the six tissue types with each curve calibrated 
by a sample known to be squamous normal. In the top 
panel, each curve was divided by the area of the reference 
sample. The topmost curve is squamous; next is HGSIL; 
the third is columnar normal; the remaining types are not 
well distinguished. In the middle panel, the reference curve 
is subtracted from each spectrum. The top curve is again 
squamous normal. The next two curves are metaplasia and 
inflammation. The next two are columnar normal and 
HGSIL. The lowest curve is LGSIL. In the bottom panel, 
each spectrum has been divided by the reference curve. 
Focusing on the 450 nm emission wavelength, the top 
curve is squamous normal. The next lower is HGSIL, fol- 
lowed by columnar normal, metaplasia and inflammation, 
with LGSIL at the bottom. 
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indistinguishable. In the lower panel, each spec- 
trum was standardized by the area under the 
curve of that spectrum before the average was 
computed. This standardization removes be- 
tween-patient variability in magnitude but also, 
unfortunately, removes information on peak in- 
tensity which may help discriminate between 
tissue types. The curve for squamous normal 
samples remains well separated because peak 
intensity occurs at a lower wavelength for these 
samples than for other tissue types, which indi- 
cates that the spectra are distinguished by their 
shapes as well as by their magnitudes. 

Figure 3 illustrates the data used for the sec- 
ond approach, in which a spectrum from tissue 
known to be normal for a given patient is used 
to calibrate all other spectra for that patient. In 
this study, when more than one normal curve 
was available for a patient, the normal curve 
used for calibration was chosen at random. After 
one patient with no recorded normal curve was 
removed, 282 calibrated spectra were analyzed. 
The curves show the average calibrated spectra 
for each tissue type. In the top panel, each spec- 
trum is divided by the area of the reference 
curve. In the middle panel, the reference curve is 
subtracted from each spectrum. In the bottom 
curve, each spectrum is divided by the reference 
curve; since this division is extremely unstable 
where the reference curve is close to 0, only the 
middle portion of each spectrum is used. These 
different adjustments appear to separate the 
curves in different ways. Only by actually using 
the calibrated data in a classification algorithm is 
it possible to determine which transformations 
are actually useful. The five data sets iIlustrated 
in Figures 2 and 3 provide the basic data used 
for classifying the samples. 

DATA REDUCTION 

For each sample, intensities are recorded for 
59 emission wavelengths for 337 nm excitation, 
57 wavelengths for 380 nm, and 41 wavelengths 
for 460 nm; a total of 157 intensities was re- 
corded for each sample. To avoid the instability 
associated with overfitting a model, and to de- 
rive a model simple enough to be implemented 
in a clinical setting, these data should be reduced 
to a few summary measures for each patient. We 
accomplish this reduction by approximating each 
spectrum as the weighted sum of a small num- 
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Fig. 4. Representing the spectra using orthonormal basis 
vectors. The top panel shows the three basis vectors from 
the unpreprocessed data at 337 nm with the largest singu- 
lar values. The bottom panel shows the spectra for a repre- 
sentative case (in dotted lines) along with the least squares 
fits produced using the three basis vectors (in solid lines.) 

ber of basic curves; that spectrum can then be 
represented by the coefficients used in the sum. 
The basic curves for each wavelength are derived 
from the (possibly preprocessed) emission data 
at that wavelength, using the singular value de- 
composition (SVD) [71. If the emission spectra 
are used as the columns of a matrix, the SVD of 
that matrix will provide a set of orthogonal basis 
vectors which span the column space of the data 
matrix, ordered by how well those basis vectors 
can be used to fit, in the least squares sense, the 
original data. By using the first few basis vectors, 
we retain most of the information about the 
spectra but with many fewer data points. 

Figure 4 illustrates this process. The upper 
panel shows the first three basis curves for the 
unpreprocessed data at 337 nm. The bottom 
panel shows the original spectra and the least 
squares fit using the three basis curves for a rep- 
resentative patient. Since the basis curves are 
orthonormal, the least squares fits are trivial to 
compute. The emission spectra seem to be fit 
reasonably well using three basis curves for each 
excitation wavelength. Thus, we represent each 
sample by three coefficients for each excitation 
wavelength, for a total of nine data points per 
sample. 
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Actual Histology 

TABLE I. Results of Applying the CART Method to Calibrated and Uncalibrated Data Sets 

Five Catevories Three Catevories Three 
Data Set % correctly K % correctly K 

classified classified 

Squamous Columnar 
normal normal Metaplasia Inflammation EGSILa HGSILb Total 

Uncalibrated 72.3 0.59 83.0 0.62 

Uncalibrated, areas normalized 74.2 0.62 84.6 0.63 

Divided by area of reference normal 69.5 0.61 79.5 0.63 

Reference normal subtracted 65.6 0.55 82.3 0.67 

Divided by reference normal 69.1 0.60 80.1 0.64 
*The K statistic give a measure of agreement adjusted for the agreement which would be expected due to 
chance alone. 

Total 

TABLE 11. Results of Applying the CART Method to Uncalibrated Data With Normalized Areas 

Predicted Histology 

~~ 

198 23 21 10 60 64 276 

Squamous normal 

Columnar normal 

Metaplasia 

Inflammation 

LGSIL 

HGSIL 

~~ ~ 

168 0 2 2 11 5 186 

7 14 0 0 4 4 29 

6 0 10 0 3 1 20 

6 4 3 7 0 7 27 

3 1 2 2 35 2 45 

8 4 4 1 7 45 69 

CLASS1 FlCATlON 

The samples were classified into predicted 
histologies using a classification and regression 
tree (CART) algorithm from the S-Plus statistical 
package [8] which produces a series of binary 
branch points; at each branch, deciding which 
branch to take depends on the value of a single 
covariate. The same covariate may be used at 
more than one branch. At the end of a series of 
such branches, a terminal node is reached and a 
classification assigned to all cases which meet the 
criteria defining that node. CART is an extremely 
flexible modeling tool which makes few paramet- 

ric assumptions and automatically accommodates 
variable interactions. 

RESULTS 

The data were classified using coefficients 
from each of the five data sets described above, 
two uncalibrated and three calibrated by a refer- 
ence curve. Outcomes were classified in two dif- 
ferent ways. In the first scheme, all six diagnostic 
categories were considered as separate; in the 
second, columnar normal, squamous normal, 
metaplasia, and inflammation were treated as 
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one category, while LGSIL and HGSIL were each 
treated as separate categories, for a total of three 
possible diagnoses. The results from the analyses 
are summarized in Table I. The K statistic gives 
a measure of agreement between observed and 
predicted values adjusted for the agreement 
which would be expected due to chance alone 
[9]. The lowest misclassification rate was given 
by the data set which was not calibrated to a 
reference curve but in which the area of each 
curve was normalized; a summary of the classifi- 
cations made using this data set are given in 
Table 11. 

DISCUSSION 

The results given in Table I1 are not suffi- 
ciently accurate for use in a clinical setting. 
Nonetheless, we can draw some interesting con- 
clusions and indicate directions for further devel- 
opment. First, the spectra can all be fit quite well 
using a small number of basis vectors; thus, the 
curves can be described in a low dimensional 
space. Second, calibrating the spectra to known 
normals did not improve the performance of the 
classification. This may indicate that the shape 
and the location of the curves, as well as the 
magnitude, carry a great deal of information. By 
closely considering which categories are well 
distinguished and which are not, it may be pos- 
sible to extract specific features of the curves to 
discriminate certain diagnoses. Thus different 
transformations, different excitation wavelengths, 
or different portions of the emission spectra 
could be used to perform different discrimina- 
tions. 

CONCLUSIONS 

SVD seems to be a practical and powerful 
technique for reducing the dimensionality of 
excitation-emission spectra. CART provides a 
simple and flexible method for classifying spec- 
tral samples based on the results of the SVD. A 
number of transformations may be applied to the 
data to adjust for between- and within-patient 
variability; different transformations have diffes- 
ent effects at different emission wavelengths. 

Additional work is needed to determine which 
transformations and which wavelengths are most 
effective for identifying specific sample types. If 
appropriate transformations can be developed, 
fluorescence spectroscopy will prove useful as a 
surrogate endpoint biomarker in chemopreven- 
tion trials. 
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